Tuning of spontaneous emission of two-dimensional photonic crystal microcavities by accurate control of slab thickness

نویسندگان

  • A. R. Alija
  • L. J. Martínez
  • A. García-Martín
  • M. L. Dotor
  • P. A Postigo
چکیده

We have found a blueshift in the cavity modes confined in two-dimensional photonic crystal microcavities when the thickness of the slab was varied uniformly by accurate dry etching. The shifts in the wavelength of the cavity modes were around 2 nm towards shorter wavelengths per nanometer reduced in the thickness of the slab. Three-dimensional plane wave expansion calculations showed that the observed shifts are inside the calculated photonic band gap of the structures. The variation in the energy position of the peaks with the thickness has been analyzed by three-dimensional finite difference time domain calculations for a one missing hole microcavity. This tuning of the emission wavelength with the change in the thickness slab shows the important effect of the third dimension in photonic crystals made out of semiconductor slabs and it can be of interest for its application in the final processed photonic devices like photonic crystal lasers. © 2005 American Institute of Physics. fDOI: 10.1063/1.1896427g

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

InGaAsP photonic band gap crystal membrane microresonators*

We have microfabricated two-dimensional ~2D! photonic band gap structures in a thin slab of dielectric material to define reflectors and high-Q microresonators. By selectively omitting holes from the 2D photonic crystal, optical microcavities, and in-plane microresonator switches can be defined. We have designed this structure with a finite difference time domain approach, and demonstrate the e...

متن کامل

Design and simulation of a pressure sensor based on a two dimensional photonic crystal slab of PbMoO4

In this paper the design and three dimensions (3D) simulation of a photonic crystal (PC) pressure sensor is presented. The device is based on a 2D PC slab of PbMoO4. The simulations are based on finite element method (FEM) and finite-difference time-domain (FDTD) method and are done using CST STUDIO SUITE software. The sensitivity of the proposed sensor is calculated by considering the deformat...

متن کامل

High-Q hybrid 3D-2D slab-3D photonic crystal microcavity.

The radiation loss in the escaping light cone with a two-dimensional (2D) photonic crystal slab microcavity can be suppressed by means of cladding the low-Q slab microcavity by three-dimensional woodpile photonic crystals with the complete bandgap when the resonance frequency is located inside the complete bandgap. It is confirmed that the hybrid microcavity based on a low-Q, single-defect phot...

متن کامل

Modified spontaneous emission from a two- dimensional photonic bandgap crystal slab

A two-dimensional photonic crystal patterned into a thin dielectric slab waveguide is shown to alter drastically the lifetime of spontaneous emission as well as the radiation pattern. This means that although the light extraction efficiency can be greatly enhanced, inhibited spontaneous emission within the photonic bandgap can result in low power output from such a structure. Strongly inhibited...

متن کامل

Spontaneous Emission in Two-Dimensional Photonic Crystal Microcavities

The properties of the radiation field in a two-dimensional photonic crystal with and without a microcavity introduced are investigated through the concept of the position-dependent photon density of states. The position-dependent rate of spontaneous radiative decay for a two-level atom with random orientation is deduced from the photon density of states using the Fermi Golden Rule.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005